Linear Algebra I

18/12/2015, Friday, 9:00-11:00

You are NOT allowed to use any type of calculators.
$1(2+6+4+4+4=20 \mathrm{pts})$
Linear equations

Consider the following linear system of equations

$$
\begin{aligned}
d+e-f & =2 \\
a+2 b+e-f & =0 \\
a+2 b+2 c-e+f & =2 .
\end{aligned}
$$

(a) Write down the augmented matrix.
(b) By performing row operations, put the augmented matrix into row echelon form.
(c) Determine the lead and free variables.
(d) By performing row operations, put the augmented matrix into row reduced echelon form.
(e) Find the solution set of the equation.

Required Knowledge: Gauss-elimination, row operations, notions of lead/free variables.

SOLUTION:

1a: Augmented matrix is given by:

$$
\left[\begin{array}{rrrrrrrr}
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
1 & 2 & 2 & 0 & -1 & 1 & \vdots & 2
\end{array}\right]
$$

1b:

$$
\begin{gathered}
{\left[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
1 & 2 & 2 & 0 & -1 & 1 & \vdots & 2
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { 1st }=\mathbf{2 n d} \\
\text { 2nd }=\mathbf{1 s t}
\end{array}}\left[\begin{array}{lllllllll}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
1 & 2 & 2 & 0 & -1 & 1 & \vdots & 2
\end{array}\right]} \\
{\left[\begin{array}{llllllll}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
1 & 2 & 2 & 0 & -1 & 1 & \vdots & 2
\end{array}\right] \xrightarrow{\text { 3rd }=\mathbf{3 r d}-\mathbf{1 s t}}\left[\begin{array}{llllllll}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
0 & 0 & 2 & 0 & -2 & 2 & \vdots & 2
\end{array}\right]} \\
{\left[\begin{array}{llllllll}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2 \\
0 & 0 & 2 & 0 & -2 & 2 & \vdots & 2
\end{array}\right] \xrightarrow{\substack{\text { 2nd }=\mathbf{3 r d} \\
\text { 3rd }=\mathbf{2 n d}}}\left[\begin{array}{llllllll}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 2 & 0 & -2 & 2 & \vdots & 2 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2
\end{array}\right]}
\end{gathered}
$$

$$
\left[\begin{array}{rrrrrrrr}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 2 & 0 & -2 & 2 & \vdots & 2 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2
\end{array}\right] \xrightarrow{\mathbf{2 n d}=\frac{1}{2} \times \mathbf{2 n d}}\left[\begin{array}{rrrrrrrr}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 1 & 0 & -1 & 1 & \vdots & 1 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2
\end{array}\right]
$$

1c: Lead variables are a, c, and d whereas b, e, and f are free variables.

1d: The matrix

$$
\left[\begin{array}{rrrrrrrr}
1 & 2 & 0 & 0 & 1 & -1 & \vdots & 0 \\
0 & 0 & 1 & 0 & -1 & 1 & \vdots & 1 \\
0 & 0 & 0 & 1 & 1 & -1 & \vdots & 2
\end{array}\right]
$$

is already in row reduced echelon form.
$\mathbf{1 e}$: The general solution is given by

$$
\begin{aligned}
a & =-2 b-e+f \\
c & =e-f+1 \\
d & =-e+f+2
\end{aligned}
$$

where b, e, and f are free variables.

Consider the matrix

$$
\left(\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & x & 1 & 1 \\
1 & 1 & x & 1 \\
1 & 1 & 1 & x
\end{array}\right)
$$

(a) Find the determinant.
(b) Determine all values of x for which this matrix is nonsingular.

Required Knowledge: Determinants, nonsingular matrices.

Solution:

2a: By applying row operation type III, we can get

$$
\operatorname{det}\left(\begin{array}{cccc}
x & 1 & 1 & 1 \\
1 & x & 1 & 1 \\
1 & 1 & x & 1 \\
1 & 1 & 1 & x
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
0 & 1-x & 1-x & 1-x^{2} \\
0 & x-1 & 0 & 1-x \\
0 & 0 & x-1 & 1-x \\
1 & 1 & 1 & x
\end{array}\right)
$$

Cofactor expansion along the last row results in

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & 1-x & 1-x & 1-x^{2} \\
0 & x-1 & 0 & 1-x \\
0 & 0 & x-1 & 1-x \\
1 & 1 & 1 & x
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ccc}
1-x & 1-x & 1-x^{2} \\
x-1 & 0 & 1-x \\
0 & x-1 & 1-x
\end{array}\right)
$$

By applying row operation type II, we can get

$$
\operatorname{det}\left(\begin{array}{ccc}
1-x & 1-x & 1-x^{2} \\
x-1 & 0 & 1-x \\
0 & x-1 & 1-x
\end{array}\right)=(1-x)^{3} \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1+x \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

Note that

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1+x \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
1 & 1+x \\
-1 & 1
\end{array}\right)=1+2+x=3+x
$$

Therefore,

$$
\operatorname{det}\left(\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & x & 1 & 1 \\
1 & 1 & x & 1 \\
1 & 1 & 1 & x
\end{array}\right)=-(1-x)^{3}(3+x)=(x-1)^{3}(3+x)=x^{4}-6 x^{2}+8 x-3
$$

2b: A square matrix is nonsingular if and only if its determinant is nonzero. Therefore, the matrix we look at is nonsingular if and only if $(x-1)^{3}(3+x) \neq 0$, in other words, if and only if $x \neq 1$ and $x \neq-3$.

Let A, B, and C be $n \times n$ matrices and

$$
M=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right] .
$$

(a) Show that M is nonsingular if and only if both B and C are nonsingular.
(b) Suppose that B and C are nonsingular. Find the inverse of M.

Required Knowledge: Partitioned matrices and nonsingular matrices.

Solution:

3a: 'if': Suppose that both B and C are nonsingular. Let $z \in \mathbb{R}^{2 n}$ be such that

$$
M z=0 .
$$

Partition z as

$$
z=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $x, y \in \mathbb{R}^{n}$. Then, we have

$$
0_{2 n}=M z=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
A x+B y \\
C x
\end{array}\right] .
$$

This leads to

$$
A x+B y=0_{n} \quad \text { and } \quad C x=0_{n} .
$$

Since C is nonsingular, we get $x=0_{n}$ and hence $B y=0_{n}$. Now, it follows from non singularity of B that $y=0_{n}$. Thus, we obtain that $z=0_{2 n}$. Consequently, M is nonsingular.
'only if': Suppose that M is nonsingular. Let $y \in \mathbb{R}^{n}$ be such that

$$
B y=0_{n} .
$$

Note that

$$
M\left[\begin{array}{c}
0_{n} \\
y
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right]\left[\begin{array}{c}
0_{n} \\
y
\end{array}\right]=\left[\begin{array}{c}
B y \\
0_{n}
\end{array}\right]=0_{2 n} .
$$

Since M is nonsingular, this means that $y=0_{n}$. Therefore, the matrix B must be nonsingular. Similarly, let $x \in \mathbb{R}^{n}$ be such that

$$
C x=0 .
$$

Note that

$$
M\left[\begin{array}{c}
x \\
-B^{-1} A x
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right]\left[\begin{array}{c}
x \\
-B^{-1} A x
\end{array}\right]=\left[\begin{array}{c}
A x-A x \\
C x
\end{array}\right]=0_{2 n} .
$$

Since M is nonsingular, this means that $x=0$. Therefore, the matrix C must be nonsingular.
3b: Let the matrix

$$
N=\left[\begin{array}{ll}
W & X \\
Y & Z
\end{array}\right]
$$

be a candidate for the inverse. Note that

$$
M N=\left[\begin{array}{cc}
A & B \\
C & 0_{n \times n}
\end{array}\right]\left[\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right]=\left[\begin{array}{cc}
A W+B Y & A X+B Z \\
C W & C X
\end{array}\right] .
$$

In case N is the inverse of M, one has

$$
\begin{gathered}
A W+B Y=I_{n} \\
A X+B Z=0_{n \times n} \\
C W=0_{n \times n} \\
C X=I_{n} .
\end{gathered}
$$

From the third equation, we obtain that $W=0_{n \times n}$ as C is nonsingular. By substituting this into the first, we get

$$
I_{n}=B Y
$$

and hence $Y=B^{-1}$. From the last and non singularity of C, we get $X=C^{-1}$. Finally, it follows from the second that $Z=-B^{-1} A C^{-1}$. Therefore, we obtain

$$
M^{-1}=N=\left[\begin{array}{cc}
0_{n \times n} & C^{-1} \\
B^{-1} & -B^{-1} A C^{-1}
\end{array}\right]
$$

Consider the vector space P_{4}. Let $S=\left\{p(x) \in P_{4} \mid p(x)+p(-x)=0\right\}$ and $L: P_{4} \rightarrow P_{4}$ be given by $L(p(x))=\frac{1}{2}(p(x)+p(-x))$.
(a) Are the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}+1$ linearly independent?
(b) Are the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}$ for a basis for P_{4} ?
(c) Show that the set S is a subpace of P_{4}. Find a basis for S and determine its dimension.
(d) Show that L is a linear transformation.
(e) Find ker L.
(f) Find the matrix representation of L with respect to the ordered basis $\left\{1+x, x+x^{2}, x^{2}+\right.$ $\left.x^{3}, x^{3}\right\}$

REQUIRED KNOWLEDGE: Subspaces, basis, dimension, linear transformations and their matrix representations.

SOLUTION:

4a: Let a, b, c, and d be scalars such that

$$
a(1+x)+b\left(x+x^{2}\right)+c\left(x^{2}+x^{3}\right)+d\left(x^{3}+1\right)=0
$$

This results in

$$
(d+a)+(a+b) x+(b+c) x^{2}+(c+d) x^{3}=0
$$

and hence

$$
\begin{aligned}
d+a & =0 \\
a+b & =0 \\
b+c & =0 \\
c+d & =0
\end{aligned}
$$

Since $(a, b, c, d)=(1,-1,1,-1)$ is a nontrivial solution for these equations, the vectors $1+x, x+$ $x^{2}, x^{2}+x^{3}, x^{3}+1$ are linearly dependent.

4b: To form a basis, they need to be linearly independent and to span the vector space P_{4}. To check the former, let a, b, c, and d be scalars such that

$$
a(1+x)+b\left(x+x^{2}\right)+c\left(x^{2}+x^{3}\right)+d x^{3}=0
$$

This leads to

$$
a+(a+b) x+(b+c) x^{2}+(c+d) x^{3}=0
$$

and hence

$$
\begin{aligned}
a & =0 \\
a+b & =0 \\
b+c & =0 \\
c+d & =0 .
\end{aligned}
$$

Clearly, the only solution for these equations is $a=b=c=d=0$. As such, the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}$ are linearly independent.

To check whether they span P_{4}, let $p(x)$ be an arbitrary polynomial belonging to P_{4} given by

$$
p(x)=\alpha+\beta x+\gamma x^{2}+\delta x^{3}
$$

The question is if the polynomial p can be written as a linear combination of the vectors $1+x, x+$ $x^{2}, x^{2}+x^{3}, x^{3} ;$ in other words, if we can find scalars a, b, c, and d such that

$$
\alpha+\beta x+\gamma x^{2}+\delta x^{3}=a(1+x)+b\left(x+x^{2}\right)+c\left(x^{2}+x^{3}\right)+d x^{3}
$$

This would result in

$$
\begin{aligned}
a & =\alpha \\
a+b & =\beta \\
b+c & =\gamma \\
c+d & =\delta .
\end{aligned}
$$

By solving these equations, we obtain $a=\alpha, b=\beta-\alpha, c=\gamma-\beta+\alpha$, and $d=\delta-\gamma+\beta-\alpha$. Therefore, the vectors $1+x, x+x^{2}, x^{2}+x^{3}, x^{3}$ span P_{4}. As they are already shown to be linearly independent, they form a basis for P_{4}.

4c: The set S is a subspace if it is nonempty and closed under vector addition and scalar multiplication:

- Clearly, $0 \in S$. So, the set S is nonempty.
- Let $p(x) \in S$ and a be a scalar. Note that $a p(x)+a p(-x)=a(p(x)+p(-x))=0$. Hence, $a p(x) \in S$.
- Let $p(x)$ and $q(x)$ be polynomials belonging to the set S. Note that $p(x)+q(x)+p(-x)+$ $q(-x)=p(x)+p(-x)+q(x)+q(-x)=0$. Thus, $p(x)+q(x) \in S$.

So, we can conclude that S is a subspace of P_{4}. Note that $p(x)=a+b x+c x^{2}+d x^{3}$ belongs to S if and only if $p(x)+p(-x)=2 a+2 c x^{2}=0$, that is $a=c=0$. Therefore, $p(x)$ belongs to S if and only if it is of the form $p(x)=b x+d x^{3}$. Thus, we can conclude that the vectors x, x^{3} form a basis for S and hence its dimension is 2 .

4d: In order to show that L is a linear transformation, observe that:

- $L(a p(x))=\frac{1}{2}(a p(x)+a p(-x))=\frac{a}{2}(p(x)+p(-x))=a L(p(x))$, and
- $L(p(x)+q(x))=\frac{1}{2}(p(x)+q(x)+p(-x)+q(-x))=\frac{1}{2}(p(x)+p(-x))+\frac{1}{2}(q(x)+q(-x))=$ $L(p(x))+L(q(x))$
for all scalars a and polynomials $p(x), q(x)$. Therefore, L is a linear transformation.
4e: Recall that

$$
\operatorname{ker} L=\left\{p(x) \in P_{4} \mid L(p(x))=0\right\}
$$

Let $p(x)=a+b x+c x^{2}+d x^{3}$. Note that $p(x) \in \operatorname{ker} L$ if and only if

$$
0=L(p(x))=\frac{1}{2}(p(x)+p(-x))=\frac{1}{2}\left(a+b x+c x^{2}+d x^{3}+a-b x+c x^{2}-d x^{3}\right)=a+c x^{2}
$$

Then, we have $p(x) \in \operatorname{ker} L$ if and only if $a=c=0$. Consequently, we get

$$
\text { ker } L=\left\{b x+d x^{3} \mid \text { band } d \text { are scalars }\right\}
$$

4f: To find the matrix representation, we proceed with finding the action of L on each basis
vectors:

$$
\begin{aligned}
& L(1+x)=\frac{1}{2}(1+x+1-x)=1=1 \cdot(1+x)-1 \cdot\left(x+x^{2}\right)+1 \cdot\left(x^{2}+x^{3}\right)-1 \cdot\left(x^{3}\right) \\
& L\left(x+x^{2}\right)=\frac{1}{2}\left(x+x^{2}-x+x^{2}\right)=x^{2}=0 \cdot(1+x)+0 \cdot\left(x+x^{2}\right)+1 \cdot\left(x^{2}+x^{3}\right)-1 \cdot\left(x^{3}\right) \\
& L\left(x^{2}+x^{3}\right)=\frac{1}{2}\left(x^{2}+x^{3}+x^{2}-x^{3}\right)=x^{2}=0 \cdot(1+x)+0 \cdot\left(x+x^{2}\right)+1 \cdot\left(x^{2}+x^{3}\right)-1 \cdot\left(x^{3}\right) \\
& L\left(x^{3}\right)=\frac{1}{2}\left(x^{3}-x^{3}\right)=0=0 \cdot(1+x)+0 \cdot\left(x+x^{2}\right)+0 \cdot\left(x^{2}+x^{3}\right)+0 \cdot\left(x^{3}\right) .
\end{aligned}
$$

Therefore, we obtain the following matrix representation:

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right]
$$

